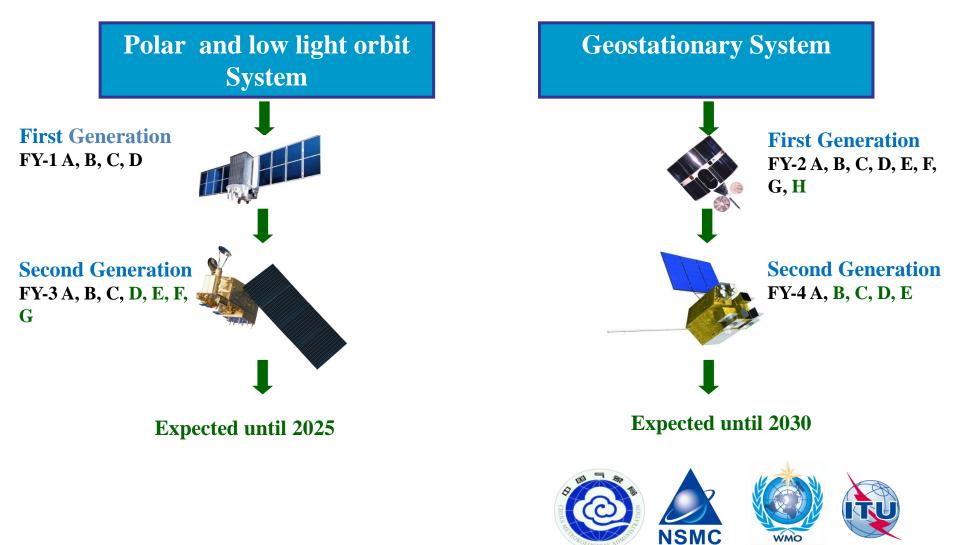


MetSat systems

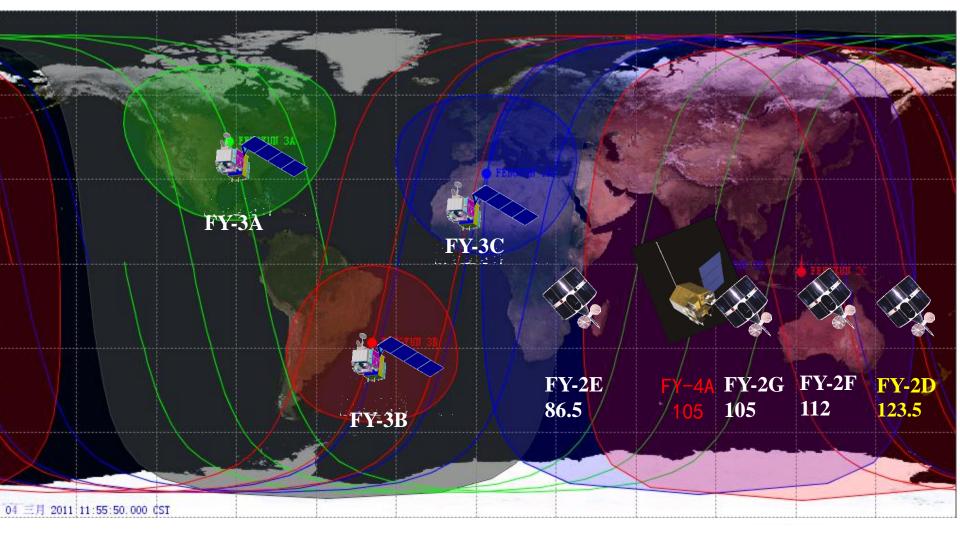
Presented to second WMO/ITU Seminar, 23 October 2017 Jing NIE

National Satellite Meteorological Centre, CMA


Outline

Overview of FENGYUN satellite systems

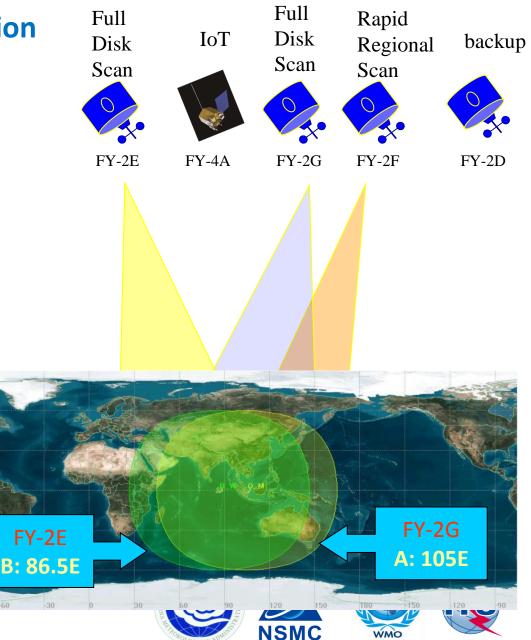
- FENGYUN Metsats Application
- Data and Products Service
- Use of Radio Spectrum



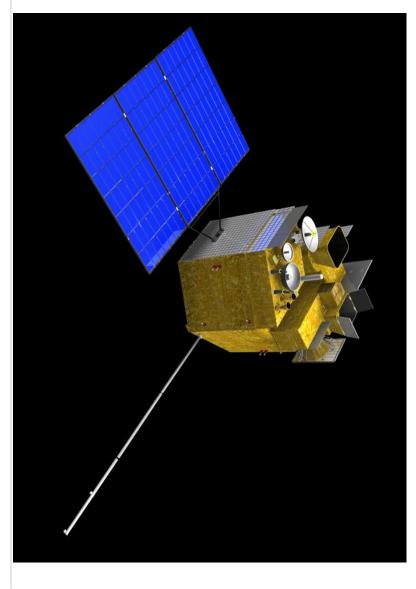
1. Overview of FENGYUN satellite systems

Polar-orbiting Series					i
Launched Satellites	1988.09.07	FY-1A	Experimental	39 Days	
	1990.09.03	FY-1B	Experimental	158 Days	
The second second	1999.05.10	FY-1C	Operational	6.5 Years	
\bigcirc	2002.05.15	FY-1D	Operational	>10 Years	CZ-4
	2008.05.17	FY-3A	Experimental	Operation	
	2010.11.05	FY-3B	Experimental	Operation	
	2013. 9.23	FY-3C	AM Orbit	Operation	
Geostationary Series Launched Satellites	1997.06.10	FY-2A	Experimental	De-orbited	
22	2000.06.25	FY-2B	Experimental	De-orbited	
	2004.10.19	FY-2C	Operational	De-orbited	
75	2006.12.08	FY-2D	123.5E	backup	CZ-3A
	2008.12.23	FY-2E	86.5E	Operation	
	2012.01.13	FY-2F	112.5E	Operation	
	2014.12.31	FY-2G	105E	Operation	
	2016.12.11	FY-4A	Experimental, 105E	Operation	CZ-3B

On Orbit FENGYUN Satellites



- ➢ 6 satellites in operation
- > 1 satellite in orbit test
- > 1 satellite on backup


1.1 FENGYUN GEO Constellation

In operation

- FY-2G: Full Disk (105E)
- FY-2E: Full Disk (86.5E)
- FY-2F: Regional (112E)
- In commission test
- FY-4A: (105E)
- In backup
- FY-2D (123.5E)

Sencond Geostationary Generation : FY-4

Main Instruments:

 AGRI: Advanced Geosynchronous Radiation Imager
 GIIRS: Geo. Interferometric Infrared Sounder
 LMI: Lightning Mapping Imager
 SEP: Space Environment Package

Spacecraft:

- 1. Launch Weight: approx 5300kg
- 2. Stabilization: Three-axis
- 3. Attitude accuracy: 3"
- 4. Bus: 1553B+Spacewire
- 5. Output power: >= 3200W

NSMC

WMO

Spectral	Spectral	Spatial	Consitivity	Main
Coverage	Band (µm)	Resolution (Km)	Sensitivity	Applications
	0.45~0.49	1	S/N≥90 (ρ=100%)	Aerosol
	0.55~0.75	0.5~1	S/N≥200 (ρ=100%)	Fog, Clouds
VIS/NIR	0.75~0.90	1	S/N≥5(ρ=1%)@0.5Km	Vegetation
	1.36 \sim 1.39	2		Cirrus
	1.58~1.64	2	S/N≥200 (ρ=100%)	Cloud,Snow
	2.10~2.35	2~4		Cirrus,Aerosol
	3.50~4.00	2	NE∆T≤0.7K(300K)	Fire
Middle-	3.50~4.00	4	NE∆T≤0.2K(300K)	Land surface
wave IR	5.80~6.70	4	NE∆T≤0.3K(260K)	WV
	6.90~7.30	4	NE∆T≤0.3K(260K)	WV
	8.00~9.00	4	NE∆T≤0.2K(300K)	WV,Clouds
Long-wave	10.3~11.3	4	NE∆T≤0.2K(300K)	SST
Infrared	11.5~12.5	4	NE∆T≤0.2K(300K)	SST
	13.2~13.8	4	NE∆T≤0.5K(300K)	Clouds,WV

AGRI's Main Usage:

Acquire multiple band, high temporal resolution, high radiation accuracy images of Earth's surface, atmosphere and cloud

GIIRS's Main Usage:

Acquire atmospheric temperature and humidity profile structures under clear condition

LMI's Main Usage:

Acquire lightning distribution maps for a certain coverage

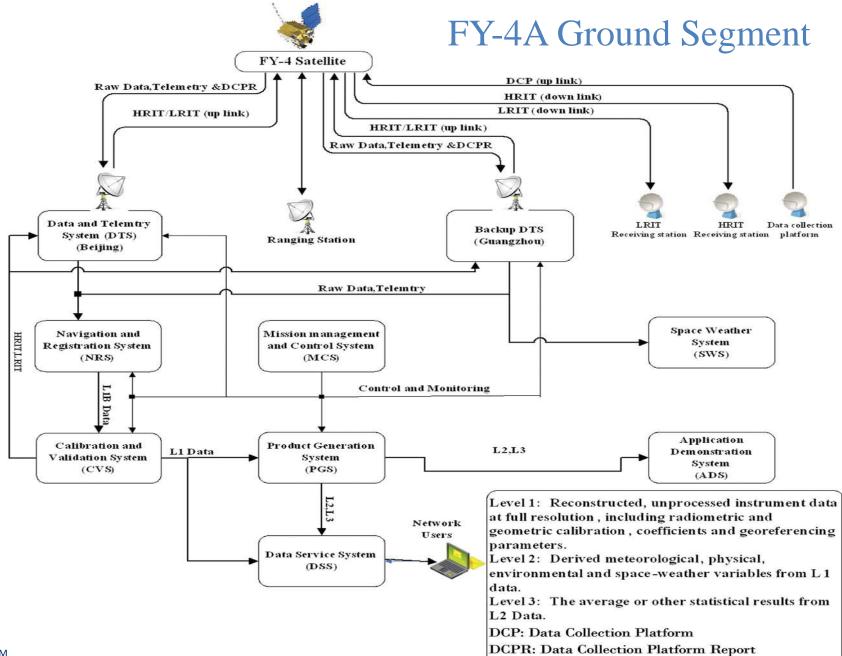
Spatial resolution	about 7.8Km at SSP
Sensor size	400×300 ×2
Wave-length at center	777.4nm
Band-width	1nm±0.1nm
Detection efficiency	>90%
False-alarm ratio	<10%
Dynamic range	>100
SNR	>6
Frequency of frames	2ms
Quantization	12 bits
Measurement Error	10%

	Range Resolution Channels
Spectral Parameters	LWIR: 700-1130 cm ⁻¹ 0.8 538
(Normal mode)	S/MIR:1650-2250 cm ⁻¹ 1.6 375
	VIS: 0.55- 0.75 μm
Spatial Pasalution	LWIR/MWIR : 16 Km SSP
Spatial Resolution	VIS: 2 Km SSP
Operational Mode	China area 5000 × 5000 Km ²
Operational Mode	Mesoscale area $1000 \times 1000 \text{ Km}^2$
Temporal Resolution	China area <1 hr
	Mesoscale area <½ hr
Sensitivity	LWIR: 0.5-1.1 S/MIR: 0.1-0.14
(mW/m ² srcm ²)	VIS: S/N>200(ρ=100%)
Calibration accuracy	1.5 K (3σ) radiation
Calibration accuracy	10 ppm (3σ) spectrum
Quantization Bits	13 bits

FY-2		FY-4		
Products	Payloads	Products	Payload	
Cloud detection	VISSR	Cloud masks	AGRI	
Cloud classification	VISSR	Cloud type	AGRI	
Total cloud amount	VISSR	Total cloud amount	AGRI	
Precipitation estimation	VISSR	Rainfall rate/quantitative precipitation estimate	AGRI	
Atmospheric motion vector	VISSR	Atmospheric motion vector	AGRI	
Outgoing longwave radiation	VISSR	Outgoing longwave radiation	AGRI	
Blackbody brightness temperature	VISSR	Blackbody brightness temperature	AGRI	
Surface solar irradiance	VISSR	Surface solar irradiance	AGRI	
Humidity product analyzed by cloud information	VISSR	Legacy vertical moisture profile	GIIRS	
Total precipitable water	VISSR	Layer precipitable water	AGRI	
Upper-tropospheric humidity	VISSR	Layer precipitable water		
Dust detection	VISSR	Aerosol detection (including smoke and dust)	AGRI	
Sea surface temperature	VISSR	Sea surface temperature (skin)	AGRI	
Snow cover	VISSR	Snow cover	AGRI	
Land surface temperature	VISSR	Land surface (skin) temperature	AGRI	
Cloud-top temperature	VISSR	Cloud-top temperature	AGRI	
		Cloud-top height	AGRI	
		Cloud-top pressure	AGRI	
		Cloud optical depth	AGRI	
		Cloud liquid water	AGRI	
		Cloud particle size distribution	AGRI	
		Cloud phase	AGRI	
		Downward longwave radiation: surface	AGRI	
		Upward longwave radiation: surface	AGRI	
		Reflected shortwave radiation: top of atmosphere	AGRI	
		Aerosol optical depth	AGRI	
		Convective initiation	AGRI	
		Fire/hot spot characterization	AGRI	
		Fog detection	AGRI	
		Land surface emissivity	AGRI	
		Land surface temperature	AGRI	
		Land surface albedo	AGRI	
		Tropopause folding turbulence prediction	AGRI	
		Legacy vertical temperature profile	GIIRS	
		Ozone profile and total	GIIRS	
		Atmosphere instability index	GIIRS	
		Lightning detection	LMI	
		Space and solar products	SEP	

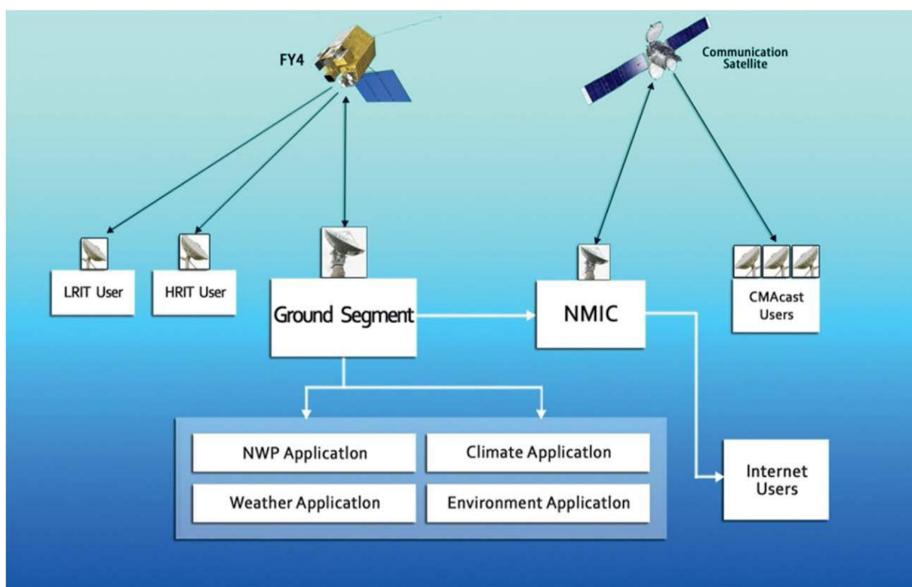
FY-4 new products are compared with FY-2

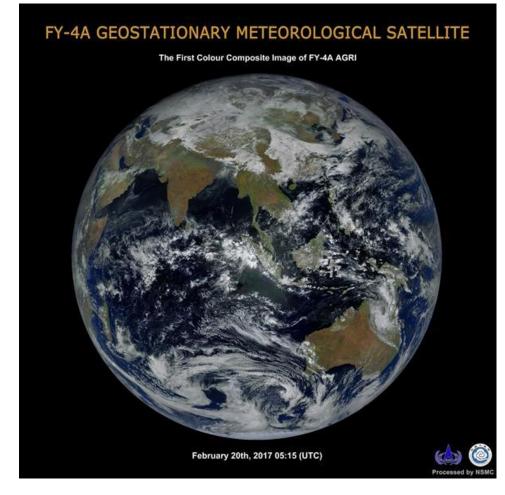
	FY-4A (experimental)	FY-4 (operational)	FY-2 (operational)
Stabilization	Three axis	Three axis	Spin
Designed life	7 years (designed life)	7 years (operation life)	4 years
Observation efficiency	85%	85%	5%
Observation mode	Imaging + sounding + lightning mapping	Imaging + sounding + lightning mapping	Imaging only
	AGRI: 14 channels Resolution: 0.5–4 km Full disc: 15 min	AGRI: 18 channels Resolution: 0.5–2 km Full disc: 5 min	VISSR: 5 channels Resolution: 1.25–5 kr Full disc: 30 min
M :	GIIRS: 913 channels SSP resolution: 16 km Spectral resolution: 0.8, 1.6 cm ⁻¹	GIIRS: >1,500 channels SSP resolution: 8 km Spectral resolution: 0.625 cm ⁻¹	_
Main instruments	LMI Area coverage SSP resolution: 7.8 km	LMI Full-disc coverage SSP resolution: 7.8 km	_
	SEP	SEP	SEM
	High-energy particles Magnetic field	High-energy particles, magnetic field, solar imager	High-energy particle Solar X-ray fluxes


Reference:

Jun Yang., 2017: INTRODUCING THE NEW GENERATION OF CHINESE GEOSTATIONARY WEATHER SATELLITES, FENGYUN-4, BAMS,1637-1658

- FY-4 will improve most products of FY-2 and introduce many new products, such as atmospheric temperature and moisture profiles, atmospheric instability index, layer perceptible water vapor, and rapidly developing clouds, and others.
- ➢ FY-4 products are expected to provide enhanced applications and services.
- The FY-4 GIIRS is one of the Group on Earth Observations (GEO) sounders planned by Global Earth Observation System of systems (GEOSS) member states in response to the call from the WMO for advanced sounders in the geostationary orbit.
- FY-4 will become an important GEO component of the global Earth-observing system.




Primary ground missions as follows:

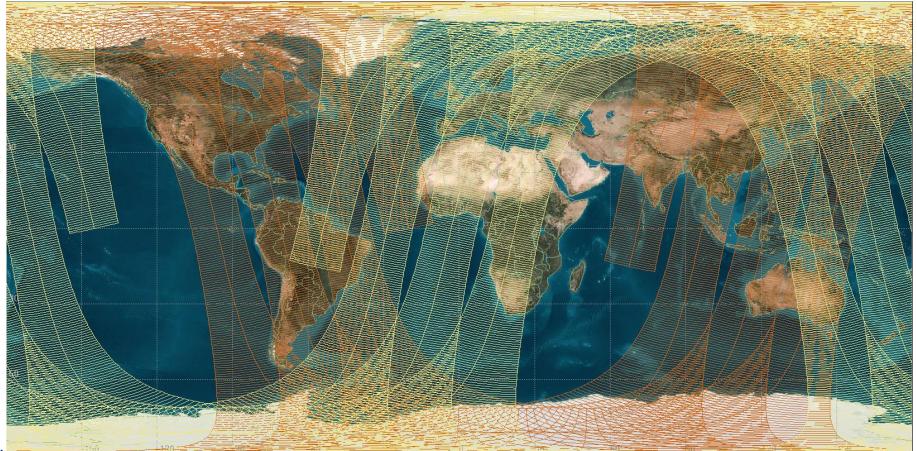
- 1) Receiving raw data from the satellite;
- 2) Determining and predicting the satellite orbit based on ranging measurements to the satellite;
- 3) Monitoring the satellite and controlling the payloads;
- 4) Undertaking the mission management and operation control of the satellite and ground systems;
- 5) Processing data for geolocation and registration;
- 6) Processing data for measurement calibration;
- 7) Producing quantitative products;
- 8) Providing an archive and distribution service for the data and products;
- 9) Carrying out applications for the weather, climate and environment;
- 10) Accomplishing monitoring and predicting services for space weather.

FY-4A data distribution and applications

THE FIRST IMAGES FROM THE AGRI OF FY-4A

2017/10/17

FENGYUN future GEO Satellites Launch Plan by 2025



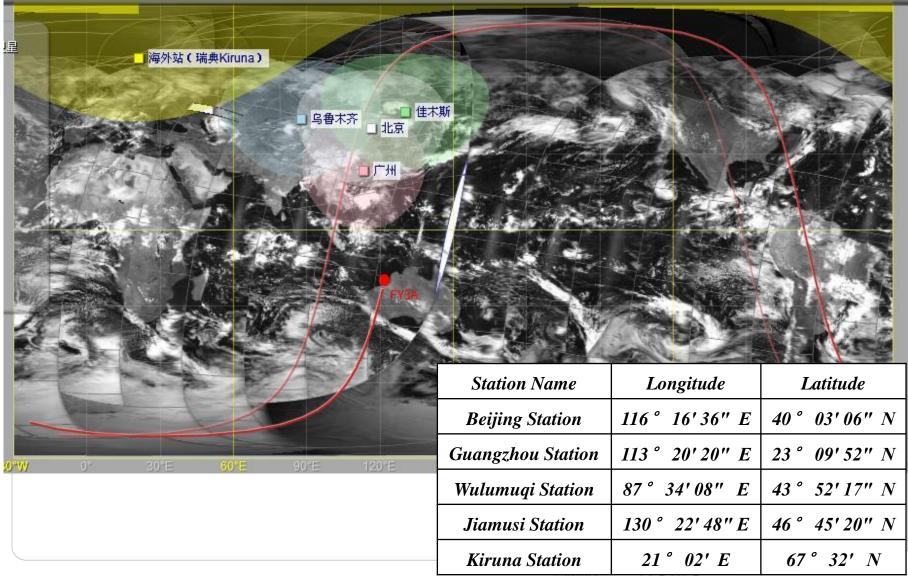
1.2 FENGYUN Polar Constellation

In operation: FY-3B (global) + FY-3C (global) + FY-3A (regional)

FY-3C LTC 10:20 AM

FY-3B LTC 13:40 PM

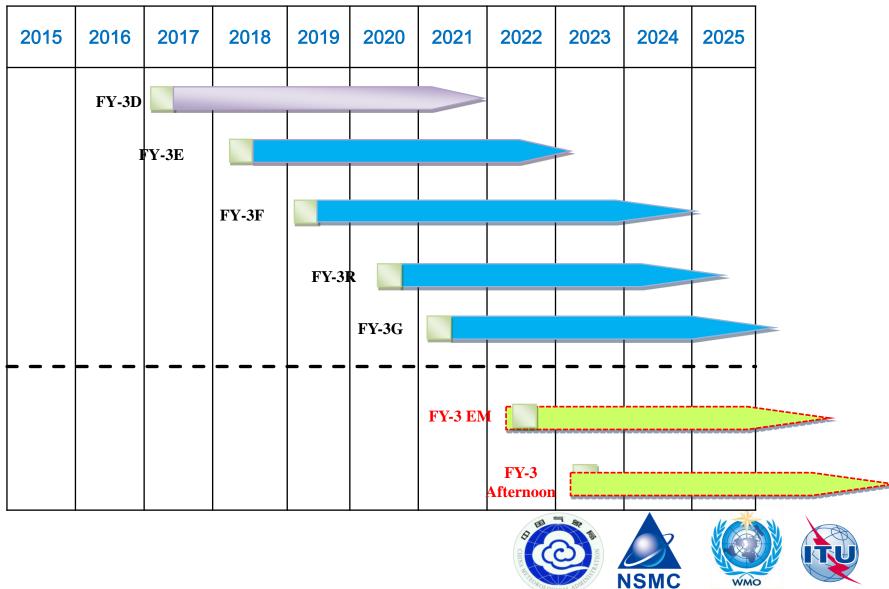
The second polar orbit generation : FY-3


- □11 instruments
- ✓ Atmospheric sounding
- ✓ Microwave Imaging
- ✓ Ozone sounding
- ✓ Radiation budget for Earth system
 □Spatial Resolution from Km to
 250m

Compared with the FY-1 satellite, the FY-3 satellite is more capable in many terms:

17

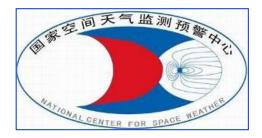
- Vertical temperature and humidity sounding,
- Ozone detection
- Microwave sensor
- Visible,
- Infrared imaging.


Global Data Latency within 4 hours maximum

FY-3B Global Image 20110827——Typhoon Talas, Nanmadol and Hurricane Irene

FENGYUN future LEO Satellites Launch Plan by 2025

1.3 CURRENT CMA RECEIVED OTHER SATELLITES


1) **GF-4**

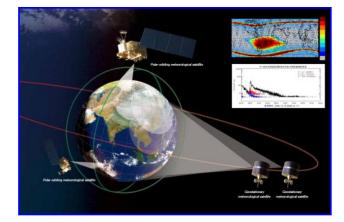
- The 4th satellite in High res. Earth Obs, Satellite Project led by CNSA.
- Successfully launched in Dec. 29,2015
- Commissioning test finished and handover declared on June 1st, 2016
- CMA is responsible for GF-4 data reception and transmission, as well as data preprocessing in MET mode.

2) TANSAT

- Launched in Dec. 22, 2016
- A joint research & development satellite program initiated by MOST(<u>Ministry of</u> <u>Science and Technology</u>) and supported by CMA and CAS(<u>Chinese Academy of</u> <u>Sciences</u>).
- CMA is responsible for data reception, processing and distribution, taking advantage of current FY-3 earth station resources.

1.4 Space Weather

- In 2002, CMA was authorized by the National Council to establish the National Center for Space Weather (NCSW), assigned to the National Satellite Meteorological Center.
- NCSW began to provide space weather operational service On July 1, 2004.
- NCSW now has preliminary developed a complete operation system covering space weather monitor, forecast, and service.



Missions of NCSW

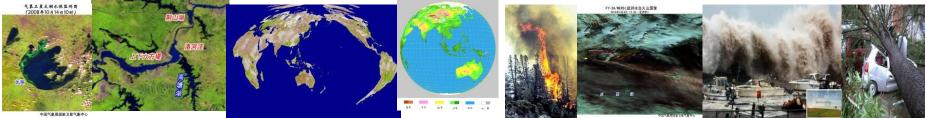
- To study and draft strategy and development programs for China' s Space weather operations.
- To build up space-based and ground-based monitoring systems for China's space weather operations.
- To be responsible for receiving, processing, distributing and studying space weather data.
- ✓ To provide space weather monitoring and warning operations and services

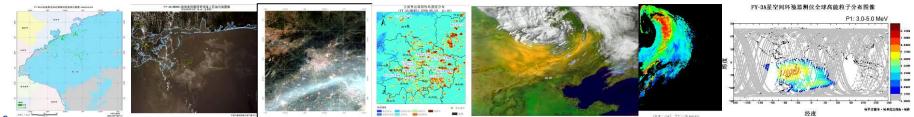
The FY satellites have been playing an important role in space weather observations

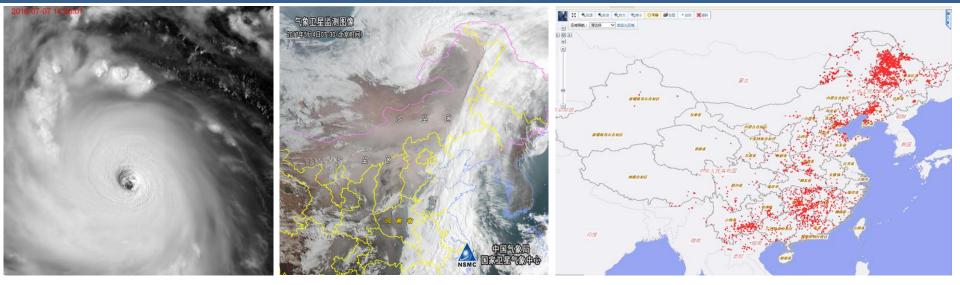
- The Polar satellites could monitor impacts of energetic particles. The FY-3C could give the ionosphere information by GNSS radio occultation receiver.
- The Geo. satellites could measure solar X-ray and energetic particles. FY-4 will provide the solar imaging and geomagnetic field observations.

2、 Applications

Weather

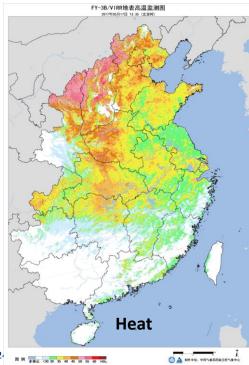


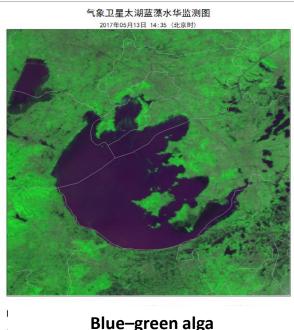

Resource



Environment

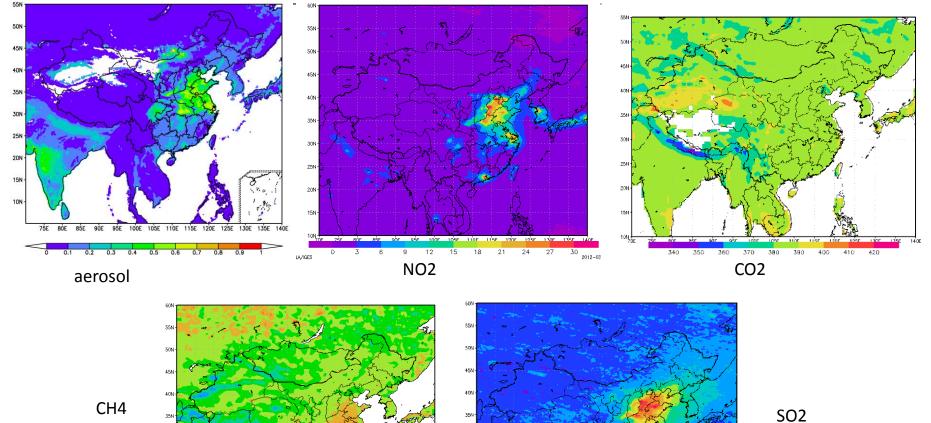
CIVIA, WIVIU/IIU Seminar, 23-24 UCTODER 201/

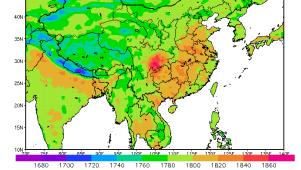

Optical Thickness

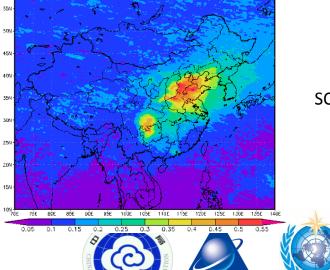


Typhoon

Sand Storm

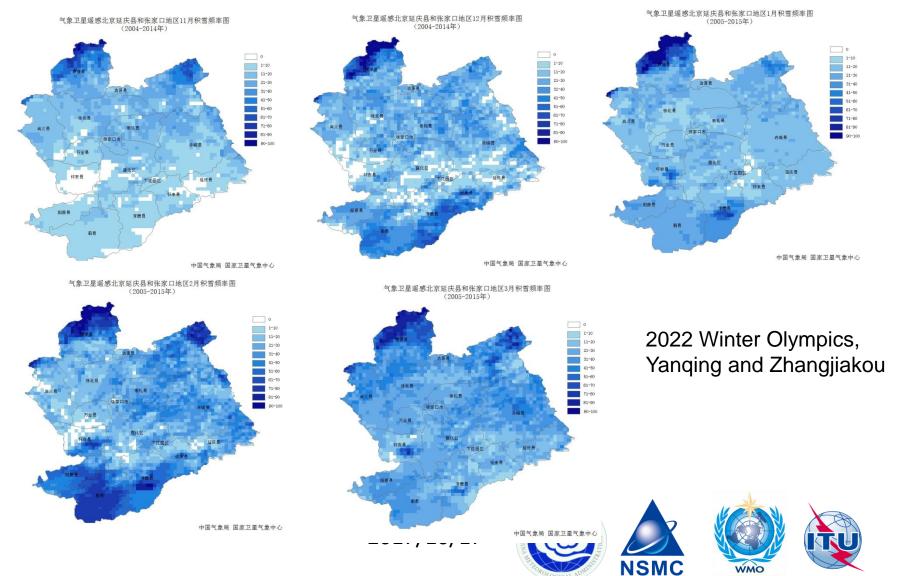


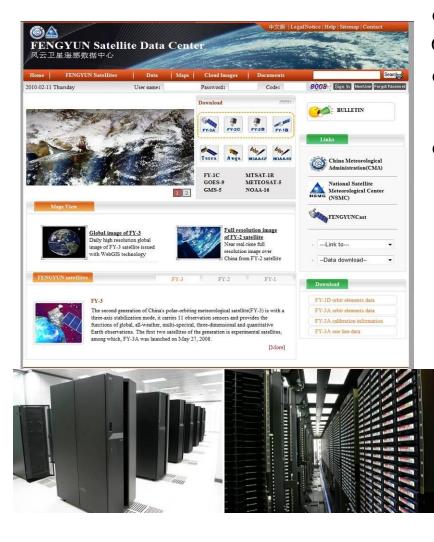




Blue-green alga

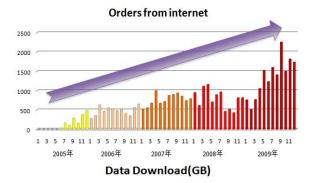
Haze and PM2.5

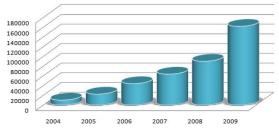



NSMC

Snow Cover

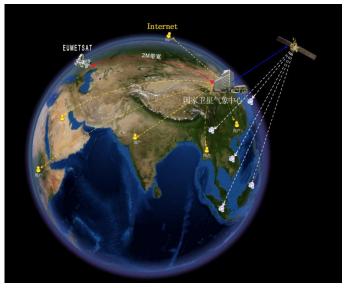
3、 Data and Products Service


• Long-term historic satellite data since 1984, over 600 TeraByte


http://satellite.cma.gov.cn/eng

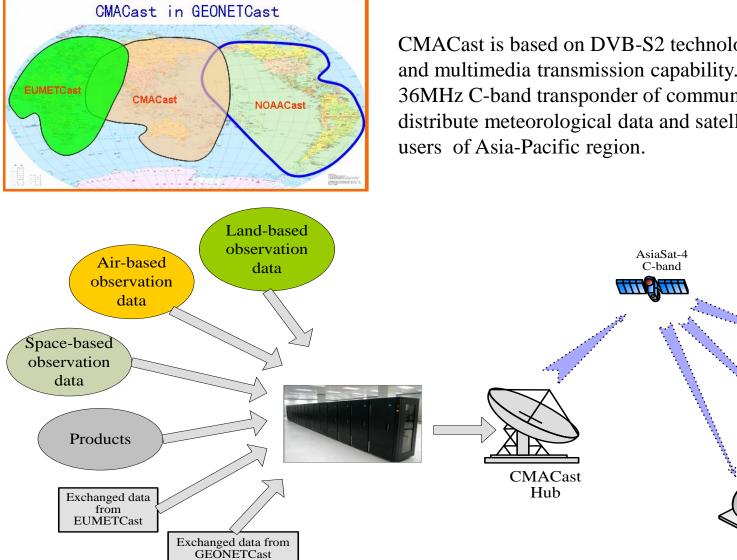
(2005 - 2010)

http://fy3.satellite.cma.gov.cn/arssen/


(2009 - present)

- 1) Web-based Service (register user)
- 2) CMACast (register user)
- 3) FTP Push (important user)
- 4) FTP Pull (register user)
- 5) Manual Service (emergency)
- 6)DB Users (register user)

7)Cloud service mode for FY-4 data application (all users)


http://satellite.cma.gov.cn

Access to Satellite Data and Products

ħ	SATELI		DATA	IMAGES	PRO	DUCTS	DOCUN	IENTS T	DOLS				
	LEO	i View	🥬 GE	0									
You	have select	t: FY-	3C 🗙	L1 DATA 🗙	Visible a	and InfraR	led Radiomete	er(VIRR) 🕱					
_		✓ FY-3	5		FY-38	3		FY-3A			FY-1D		
L Sa	atellite		A-18			A-17			.6			15 +	
🗆 Pi	roduct				C L1 DA			Atmosp	here		Land		
					der	M	croWaya Hum	idity Soundarth	WHS)	MEdu.	m Resolution	Sn +	
	atalog eriod	C L1 D	ata(L1)	perature Sour	der	Mi	croWave Hum	idity Sounder(N			m Resolution	sp[±]	
		□ L1 D	ata(L1)	Instrument		Mi Format	croWave Hum Resolution	idity Sounder(N Start Date	Last Date	File count	Wolume (GB)	Sp., (±) Availability	Operatio
	eriod	C L1 D	əta(L1)						Last Date 2013- 09-25	File count 7	Volume		Operatio
- P	eriod Product▲ FY-3C VIRF FY-3C VIRF	L1 D	Satellite FY3C FY3C	Instrument VIRR VIRR	Period HHmm HHmm	Format HDF HDF	Resolution	Start Date 2013-09-25 2013-09-25	Last Date 2013- 09-25 2013- 09-25	File count 7 7	Volume (GB) 0.48 0.01	Availability View View	
- P	eriod Product▲ FY-3C VIRF	L1 D	sta(L1) Satellite FY3C	Instrument VIRR	Period HHmm	Format HDF	Resolution 1000M	Start Date 2013-09-25	Last Date 2013- 09-25 2013- 09-25 2013- 09-25	File count 7 7 7	Volume (GB) 0.48 0.01 0.48	Availability View	Go
□ P	eriod Product▲ FY-3C VIRF FY-3C VIRF	L1 D	Satellite FY3C FY3C	Instrument VIRR VIRR	Period HHmm HHmm	Format HDF HDF	Resolution 1000M	Start Date 2013-09-25 2013-09-25	Last Date 2013- 09-25 2013- 09-25 2013-	File count 7 7	Volume (GB) 0.48 0.01	Availability View View	Go Go

Satellite Data Service and Sharing

Americas

CMACast is based on DVB-S2 technology with both file and multimedia transmission capability. It uses an entire 36MHz C-band transponder of communication satellite to distribute meteorological data and satellite sensing data to

and a state of the state of the

And a start of the start of the

Asia

Pacific

CMA

Common Users

4、Use of Radio Spectrum

4.1 FY-2

- Mission name: FY-2D, FY-2E, FY-2F, FY-2G and FY-2H
- General objective: Chinese first generation geostationary meteorological satellite systems.
- ITU filing name: FY-2A, FY-2AS, FY-2B, FY-2BS, FY-2C, FY-2CS, FYGEOSAT-86.5E,
- FYGEOSAT-99.5E, FYGEOSAT-105E, FYGEOSAT-112E, FYGEOSAT-123.5E.
- **Orbit:** GEO (86.5E, 99.5E, 105E, 112E and 123.5E)
- Main earth station(s): Beijing, Guangzhou, Xinjiang (China)
- Service frequencies: See below table.

Frequency range (MHz)	Emission	Bandwidth (MHz)	Direction	Service
1671.6-1691.6	20M0G1D	20	S-E	CDAS
2046.5-2048.5	2M00G1D	2	E-S	S-VISSR
1686.5-1688.5	2M00G1D	2	S-E	S-VISSR
2050.87-2051.13	260KFXD	0.26	E-S	LRIT
1690-1691	1M00G2W	1	S-E	LRIT
1690.87-1691.13	260KFXD	0.26	S-E	WEFAX
401.1-401.4		0.3	E-S	DCP
402.0-402.1		0.1	E-S	DCP
2059.487-2059.513	26K0FXD	0.026	E-S	S-WEFAX
1699.487-1699.513	26K0FXD	0.026	S-E	S-WEFAX
2050-2051	1M00G2W	1	E-S	Ranging
1690-1691	1M00G2W	1	S-E	Ranging
2046-2047	1M00G2W	1	E-S	Ranging
1686-1687	1M00G2W	1	S-E	Ranging
2044-2045	1M00G2W	1	E-S	Ranging
1684-1685 MA, WMO/ITU Seminar, 23-24 October 2017	1M00G2W	1	S-E	Ranging

4.2 FY-3

Mission name: FY-3 series

General objective: Chinese second generation non-geostationary meteorological satellite systems.

ITU filing name: FY-3, FY-3-A

Launch Date: FY-3A, FY-3B and FY-3C of FY-3 series were launched on 27 May 2008, 5 November 2010 and 23 September 2014 respectively, FY-3D will be launched on Second half of 2017.

Orbit: Polar orbiting satellite, Apogee: 854km, Perigee: 818km

Service frequencies: L, S and X bands.

Local time of descending node: 1) FY-3A and FY-3C:10:00-10:20; 2) FY-3B and FY-3D :13:40-14:00.

Main earth station(s): Beijing, Guangzhou, Xinjiang, Jiamusi(China), Kiruna(Sweden).

1) Data transmission

Missions	Frequency (MHz)	Emission	Bandwidth (MHz)	Direction	Service
	1704.5	6M80G1W	6.8	S-E	HRPT
FY-3A/FY-3B	7775	45M0G1W	45	S-E	MPT
	8145.95	149MG1W	149	S-E	DPT
	1701.4	6M80G1W	6.8	S-E	HRPT
FY-3C	7780	60M0G1W	60	S-E	MPT
F 1-3C	8175	300MG1W	300	S-E	DPT
	1706.7	6M80G1W	6.8	S-E	HRPT
FY-3D	7820	60M0G1W	60	S-E	MPT
Г 1-3D	8250	300MG1W	300	S-E	DPT

2) Passive sensor

Payload name	Frequency (GHz)
Microwave Radiation Imager	18.6-18.8, 23.6-24, 36-37, 86-90
MWRI	
Microwave Temperature Sounder	50.2-50.4,51.56-51.96, 52.6-53,54.2-54.6, 55.3-55.7 53.396-53.566,
	54.740-55.140, 57.125-57.455
Microwave Humidity Sounder	89,150; 113.75,123.75,176.31,178.81,187.81,190.31;
	115.75,121.75,180.31,186.31; 181.51,185.11; 182.31,184.31;
	116.25,117.65,117.95,119.55,119.85,121.25; 118.45,119.05;
	118.55,118.95; 118.67,118.83;

3) Active sensor

CMA,

Payload name	Frequency center / bandwidth GHz)	Frequency band (GHz)
Precipitation measurement radar,	13.6/0.0006	13.5997-13.6003
PMR	35.75/0.5	35.5-36
Wind radar, WMFR-C	5.41/0.32	5.25-5.57
	5.3/0.02	5.29-5.31
Wind radar, WMFR-KU	13.5/0.5	13.25-13.75
W	13.276/0.02	13.266-13.286

4.3 FY-4

Mission name: FY-4 series

General objective: Chinese second generation geostationary meteorological satellite systems.

Launch Date: The FY-4A was launched in 11Dec 2016, the second satellite, FY-4B, will be launched in year 2019.

ITU filing name: FYGEOSAT-99.5E/-A-99.5E, FYGEOSAT-105E/-A-105E. **Orbit:** GEO (99.5E/105E) FY-2A, FY-2AS, FY-2B, FY-2BS, FY-2C, FY-2CS, FYGEOSAT-A-79E, FYGEOSAT-86.5E/-A-86.5E, FYGEOSAT-99.5E/-A-99.5E, FYGEOSAT-105E/-A-105E, FYGEOSAT-112E/-A-112E, FYGEOSAT-123.5E/-A-123.5E and FYGEOSAT-A-133E.

Main earth station(s): Beijing, Guangzhou, Xinjiang and Zhangjiakou or
 Chengde(China); Zhangjiakou or Chengde station is under considering.
 Service frequencies: Frequencies, bandwidth and direction of missions for FY-4 missions
 are listed in the bellow table.

1) Data transmission

Frequency range (MHz)	Direction	Service
401.1-401.4	E-S	DCP
402.0-402.1	E-S	DCP
1675-1690	S-E	HRIT/DCPR
1690-1696	S-E	Ranging
1696-1698	S-E	LRIT/EWAIB
2056.5~2057.5	E-S	LRIT
2042-2052	E-S	Ranging
2222-2232	S-E	Ranging
7450-7550	S-E	RD
8175~8215	E-S	HRIT
18100-18400	S-E	RD
25500-27000	S-E	RD

Frequency use of future FENGYUN satellites

1) Data transmission

- Higher frequency, higher bandwidth and higher speed: 25.5-27GHz
- Data relay: 25.25-27.5GHz
- 2) Sensor
 - Active: 94GHz
 - Passive:229GHz, 243GHz, 325GHz,448GHz, 664GHz

Thanks!

