	WORLD WEATHER WATCH
COMMISSION FOR BASIC SYSTEMS
	[image: image4.png]World Meteorological Organization
Working ogethr i weathe,climts nd water

	
	

	Task Team on Aviation XML
Montreal, Canada, 7-9 October 2013
Submitted by: Jeremy Tandy, Met Office
	TT-AvXML-3/Doc(15)
Agenda Item 5.7

	
	02 October 2013

Document No. 15 (Page 9)

APIs for web register including download and validation
Requirement
Programmatic access to the WMO Codes Registry is required to support automated validation of XML-encoded TAF, METAR/SPECI and SIGMET reports.
Proposal

The WMO Codes Registry provides a RESTful API, details of which are provided in the User Guide (http://codes.wmo.int/ui/resources/WMO-Codes-Registry_user-guide-v1.0.pdf).
WMO Codes Registry is provided by Met Office under the Open Government License.

For convenience, the relevant sections of the User Guide are provided overleaf:

· Programmatic read access to WMO Codes Registry
· Register content validation
Recommended Text

None – this is an information paper.

Programmatic read access to WMO Codes Registry

Programmatic access to the WMO Codes Registry is provided via HTTP. Examples are provided based on use of the cURL utility, but any software application capable of executing HTTP would suffice.

Unless specified otherwise, all examples use the HTTP GET operation.

Note: This section describes only those elements of the API providing read-access to the Registry content; more details of the programmatic API can be found here, including a summary of the API operations.

Content negotiation

The Registry software supports content negotiation via HTTP. The supported formats are HTML, Turtle, RDF/XML and JSON-LD.

The registered mime-types for these formats are:

· HTML:
text/html

· Turtle:

text/turtle

· RDF/XML:
application/rdf+xml
· JSON-LD:
application/ld+json
The default response of the Registry is the provision of HTML content. This may be overridden either by use of the “Accept” HTTP request header.

Alternatively, one may append the _format={format} query parameter to the HTTP request:
· Turtle:

?_format=ttl
· RDF/XML:
?_format=rdf
· JSON-LD:
?_format=jsonld
For consistency, all examples below will request content in turtle format.
Register retrieval

This section describes the API operations pertaining to retrieval of information about Registers.
· To request details of a Register and those members with status category “accepted”.

GET
http://registry/{register}
Example:

curl –i –H “Accept:text/turtle” http://codes.wmo.int/bufr4/codeflag/0-20-086

· To request details of a Register, excluding members.

GET
http://registry/{register}?non-member-properties
Example:

curl –i –H “Accept:text/turtle” http://codes.wmo.int/bufr4/codeflag/0-20-086?non-member-properties

· To request details of a Register and a page of those members with status category “accepted”.

GET
http://registry/{register}?firstPage

GET
http://registry/{register}?_page={n}
Example:

curl –i –H “Accept:text/turtle” http://codes.wmo.int/306/4678?_page=2

· To request details of a Register and those members with specified status.

GET
http://registry/{register}?status={status}
{status} must be one of:

· notAccepted

· submitted

· reserved

· invalid

· accepted

· valid

· experimental

· stable

· deprecated

· retired

Example:

curl –i –H “Accept:text/turtle” http://codes.wmo.int/bufr4/codeflag/0-20-086?status=reserved

· To request details of a Register and members – including associated Register Item resources.

GET
http://registry/{register}?_view=with_metadata
Example:

curl –i –H “Accept:text/turtle” http://codes.wmo.int/49-2/AerodromeRecentWeather?_view=with_metadata

· To request details of a specific version of a Register and those members valid for that version.

GET
http://registry/{register}:{version}
Example:

curl –i –H “Accept:text/turtle” http://codes.wmo.int/common/c-15:3

· To request details of a Register, its members, the Register Item associated with the Register and a list of versions of that Register Item.

GET
http://registry/_{register}?_view=version_list
Example:

curl –i –H “Accept:text/turtle” http://codes.wmo.int/_common?_view=version_list

· To request details of a Register and its members at a specific date-time.

GET
http://registry/{register}?_versionAt={dateTime}
Example:

curl –i –H “Accept:text/turtle” http://codes.wmo.int/common/c-6?_versionAt=2013-08-05T12:00:00Z
Entity and Register Item retrieval

This section describes the API operations pertaining to retrieval of information about Entities and Register Items. Where Entities are referenced from outside the scope of the Registry, no guarantees can be made as to the behaviour of those resources. As a result, this section describes the operations pertaining to retrieval of information about those Entities managed within the scope of the Registry system.

· To request information about an Entity.

GET
http://registry/{register}/{entity}
Example:

curl –i –H “Accept:text/turtle” http://codes.wmo.int/bufr4/codeflag/0-20-086/6

· To request information about an Entity and the associated Register Item.

GET
http://registry/{register}/{entity}?_view=with_metadata
Example:

curl –i –H “Accept:text/turtle” http://codes.wmo.int/306/4678/FZDZ?_view=with_metadata

· To request information about a Register Item and the associated Entity.

GET
http://registry/{register}/_{item}
Example:

curl –i –H “Accept:text/turtle” http://codes.wmo.int/49-2/AerodromeRecentWeather/_REFZDZ

· To request information about a specific version of a Register Item and the associated information known about the associated Entity for that version.

GET
http://registry/{register}/_{item}:{version}
Example:

curl –i –H “Accept:text/turtle” http://codes.wmo.int/49-2/AerodromeRecentWeather/_REFZDZ:1

· To request information about a Register Item, the associated Entity and the list of each version of the Register Item – including the interval over which it was valid, which version (if any) it replaced and whether it is the current version of the item..

GET
http://registry/{register}/_{item}?_view=version_list
Example:

curl –i –H “Accept:text/turtle” http://codes.wmo.int/49-2/AerodromeRecentWeather/_REFZDZ?_view=version_list

· To determine whether the Entity specified with the given URI is known within the Register sub-tree and has status category “accepted”; if found, details of the Entity are provided else a HTTP 404 “Not found” response is given.

GET
http://registry/{register}?entity={uri}
Example:

curl –i –H “Accept:text/turtle” http://codes.wmo.int/ bufr4/b/12?entity=http://codes.wmo.int/common/c-15/me/dewPointTemperature
Register content validation

WMO Codes Registry relationship to WMO AvXML data exchange standard

The primary purpose of the WMO Codes Registry is to provide web-accessible resources that can be referenced from WMO AvXML-compliant data products.

Additionally, the WMO Codes Registry supports validation of those data products by assessing whether the terms used therein are members of the authoritative code-lists defined in the WMO and ICAO technical regulation.

Note: During the period of Initial Operating Capability, the WMO Codes Registry is not intended to support operational validation of data products. It is anticipated that offline copies of the Registry content will be used for local validation in operational systems.

The WMO AvXML data exchange standard is developed in line with community best practice using a model driven approach based on the ISO 19100-series of International Standards enables a semantic model to be encoded in a variety of formats – including GML.

Figure 4 provides a schematic of the model driven approach to the development of data exchange standards.

[image: image1.png]Application Schema =
(aka ‘conceptual model’) N
| e XMLSchema 1.0

A

=
GML/XML R

«conformsto»

e I data products
- 2. Schematron
sszsras E
e / s FuIIM?on Validatable
3 data products
M

Technology independent description of o
content and structure of information to Validation schema
be exchanged for a given application and rules

Figure 4: Schematic of model-driven approach to development of data exchange standards

A critical factor in the development of the WMO AvXML data exchange standard is the ability to bind the data model to the code-tables defined in existing WMO technical regulation. Figure 5 illustrates how this is achieved by using a «CodeList» class with tagged values that reference the appropriate controlled vocabulary, as published within the WMO Codes Register, and the validation regime that should be applied.

[image: image2.png]TWXXM METAR/SPECI

Manual on Codes
Intorational Codes

VOLUME 12

«DataTyper
AerodromeRunwaystate

+runveay : Runway [0..1]
+dleared : Boolean 0..1]

+contamination : RunwayContamination [0..1]
+snowClosure : Boolean [0..1] §

+depositType :[RunwayDeposits [0.1] |

+ depthofD eposit & DEpthOMDEpostt [0-1]
+brakingAction : BrakingAction [0..1] \
+frictionCoefficient : FrictionCoefficient [0..1]

020086
Runway deposits

«CodeList
RunwayDeposits 4

Code figue

0 Clear and dry tagged values:
1 Damp vocabulary =*http://codes.wmo.int /bufrd /c odeflag/0-20-086'
2 Wetvith water patches extensibility =“none’

3 Rime and ros covered depth normal lessthan 1)

4 Dry snow e — . —
s Wetsnow . . ;

M S UR http.//coies.wmo. int/bufr4/codeflag/0-20-086
7 loe — - T perational

® Compacted oroled snow Operatonal

3 Frozen s or ridges Operatonal

1014 Reserved Operatonal
15 Mising o not eporte (e, due to uay clearance i progress) operatonal

BUFR edition 4 Code- and Flag-tables

Figure 5: Binding data model to WMO code-tables

For reference, “extensibility” may be one of:

· "none": implies that only terms from the specified code list are permitted;

· "narrower": implies that terms with more refined definitions of the terms from the specified code list are permitted (e.g. narrower semantics); and
· "any": implies that anything goes and the specified code list is simply a recommendation.

Also note that the “vocabulary” and “extensibility” tagged values can be found in the XML Schema generated from the data model. Figure 6 provides a snippet from metarSpeci.xsd.

 <complexType name="AerodromeRunwayStateType">
 <sequence>
 <element maxOccurs="1" minOccurs="0" name="runway" type="saf:RunwayDirectionPropertyType"/>
 <element maxOccurs="1" minOccurs="0" name="depositType" type="iwxxm:RunwayDepositsType"/>
 <element maxOccurs="1" minOccurs="0" name="contamination" type="gml:ScaleType"/>
 <element maxOccurs="1" minOccurs="0" name="depthOfDeposit" type="gml:LengthType"/>
 <element maxOccurs="1" minOccurs="0" name="estimatedSurfaceFriction" type="gml:ScaleType"/>
 </sequence>
 <attribute name="allRunways" type="boolean"/>
 <attribute name="cleared" type="boolean"/>
 <attribute name="estimatedSurfaceFrictionUnreliable" type="boolean"/>
 <attribute name="snowClosure" type="boolean"/>
 </complexType>

 <complexType name="RunwayDepositsType">
 <annotation>
 <appinfo>
 <vocabulary>http://codes.wmo.int/bufr4/codeflag/0-20-086</vocabulary>
 <extensibility>none</extensibility>
 </appinfo>
 <documentation>Type of deposit on a runway. See WMO No. 306 Vol I.1 code table 0919 and WMO No.
 306 Vol I.2 FM 94 BUFR code table 0 20 086 "Runway deposits".
 </documentation>
 </annotation>
 <complexContent>
 <extension base="gml:ReferenceType"/>
 </complexContent>
 </complexType>

Figure 6: XML Schema snippet from metarSpeci.xsd showing "vocabulary" and "extensibility" tagged values

The “vocabulary” and “extensibility” tagged values provide sufficient information for one to validate whether a data product asserting compliance with the WMO AvXML data exchange standard (see Figure 7 for an example fragment from a METAR) is using terms from the authoritative lists as specified in the WMO and ICAO technical regulation.

 <iwxxm:runwayState>
 <iwxxm:AerodromeRunwayState>
 <iwxxm:depositType
 xlink:href="http://codes.wmo.int/bufr4/codeflag/0-20-086/1"
 xlink:title="Damp"/>
 </iwxxm:AerodromeRunwayState>
 </iwxxm:runwayState>

Figure 7: XML snippet from METAR data product

 Validation mechanisms

The WMO Codes Registry provides validation via both web application and programmatic API.

In the case of the web application, one simply enters the URI of the term to be validated in the form-field and selects “check”. The web application will then determine whether the URI refers to an Entity within the Registry, and provides information about where this Entity is registered – as illustrated in Figure 8.

[image: image3.png]WMO Codes Registry n Spargl

Check whether a URI is registered

http//codes.wmo.int/bufr4/codeFlag/0-20-086/1 check
URIis registered: Item Register Status
Damp 0-20-086 [stable]

Developed by Epimorphics Lid

Figure 8: Entity validation via the web application

Alternatively, the programmatic API may be used to achieve the same result by way of a HTTP request. The example below is based on use of the cURL utility, but any software application capable of executing HTTP would suffice.

The following API request will validate whether a list of URIs are registered as entities within the specified Register and its Sub-registers.

POST
http://registry/{register}?validate={uri1}&validate={uri2}&...

If successful, the Registry will provide a HTTP 200 “OK” response with body containing a list of Register Items associated with the given Entity or Entities. Else the Registry provides a HTTP 400 “Bad request” response with body indicating:

URI not found anywhere: [...]

 Example: to determine with the Runway Deposit type “Damp” occurs within the code-tables of FM 94 BUFR (edition 4) …
curl –i –X POST http://codes.wmo.int/bufr4?validate=http://codes.wmo.int/bufr4/codeflag/0-20-086/1

response: HTTP 200 “OK”
http://codes.wmo.int/bufr4/codeflag/0-20-086/1 is http://codes.wmo.int/bufr4/codeflag/0-20-086/_1
Note: For more information about validation using the programmatic API please refer here.

[image: image4.png]